How to add a hidden state in test_step when dealing with sequential data?

I have a Trainer with truncated_bptt_steps option like this:

trainer = pl.Trainer(truncated_bptt_steps=100)

A training_step method looks like this:

def training_step(self, batch, batch_idx, hiddens):
    out, hiddens = self.lstm(data, hidden)

    result = pl.TrainResult(minimize=loss, hiddens=hiddens)
    return result

I have a problem because test_step doesn’t have a hiddens arguments, but forward method of a neural network needs it:

def forward(self, input, hiddens):
    output, hiddens = self.lstm(input, hiddens)
            
    return output, hiddens

My current test_step looks like this:

def test_step(self, batch, batch_idx, hiddens) -> Any:
    logits, hiddens = self.lstm(X_batch, hiddens)
    ... 

But when I run the whole model I have an error when reaching test_step:

File "/Users/ken/opt/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/evaluation_loop.py", line 333, in _evaluate
    output = self.evaluation_forward(model, batch, batch_idx, dataloader_idx, test_mode)
  File "/Users/ken/opt/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/evaluation_loop.py", line 685, in evaluation_forward
    output = model.test_step(*args)
TypeError: test_step() missing 1 required positional argument: 'hiddens'